目的 探讨葛根素对糖基化牛血清白蛋白(glycosylated bovine serum albumin,GBSA)损伤兔血管内皮依赖性舒张功能的影响及机制。方法 糖基化牛血清白蛋白孵育兔离体胸主动脉环30 min诱导血管内皮功能损伤,观察葛根素(0.25、0.5和1 g·L-1)对糖基化牛血清白蛋白诱导血管内皮功能损伤的保护作用,以及N-硝基-L-精氨酸(30 μmol·L-1)和吲哚美辛(10 μmol·L-1)对葛根素保护作用的影响,并检测血管组织中一氧化氮(nitric oxide,NO)和丙二醛(malonaldehyde,MDA)含量及超氧化物歧化酶(superoxide dismutase,SOD)的活性。结果 200 mg·L-1糖基化牛血清白蛋白孵育血管环30 min,明显降低乙酰胆碱诱导的内皮依赖性舒张反应,没有影响硝普钠诱导的非内皮依赖性舒张反应,血管组织中一氧化氮含量和超氧化物歧化酶活性降低而丙二醛含量增加。用0.25~1 g·L-1葛根素分别孵育血管环15 min,再与200 mg·L-1糖基化牛血清白蛋白共同孵育30 min,明显改善糖基化牛血清白蛋白所致的血管舒张功能的损害,升高血管组织中一氧化氮含量和超氧化物歧化酶活性而降低丙二醛含量。N-硝基-L-精氨酸部分地抑制了葛根素(1 g·L-1)对血管内皮功能的保护作用,而吲哚美辛没有影响葛根素(1 g·L-1)的保护效应。结论 葛根素具有对抗糖基化牛血清白蛋白损伤血管内皮依赖性舒张的作用,其机制可能与增加一氧化氮合成及抗氧化有关。
Abstract
OBJECTIVE To investigate the effects of puerarin on impaired endothelium-dependent relaxation induced by glycosylated bovine serum albumin (GBSA) in rabbit thoracic aorta and its mechanisms. METHODS The rings were incubated with GBSA for 30 min to induce endothelial dysfunction, and with puerarin(0.25、0.5 and 1 g·L-1), N-nitro-L-arginine methyl ester (L-NAME, 30 μmol·L-1), and indomethacin(10 μmol·L-1) to investigate the protective effect of puerarin on impaired vascular endothelial function elicited by GBSA, and the effect of L-NAME and indomethacin on the protective effect of puerarin. Moreover, the content of nitric oxide(NO) and malonaldehyde(MDA) and the activity of superoxide dismutase(SOD) in the rings were measured. RESULTS Exposure of aortic rings to GBSA(200 mg·L-1) for 30 min resulted in a significant inhibition of endothelium-dependent relaxation, but had no affect on endothelium-independent relaxation. GBSA significantly decreased the level of NO and the activity of SOD but largely increased the content of MDA in vascular tissues. Pre-incubation of aortic rings with puerarin markedly attenuated the inhibition of endothelium-dependent relaxation induced by GBSA. This protective effect of puerarin (1 g·L-1) was partially inhibited by L-NAME but not by indomethacin. Puerarin obviously increased NO level and SOD activity but evidently decreased MDA content in rings. CONCLUSION Puerarin can protect against vascular endothelial dysfunction caused by GBSA and its mechanisms may be related to enhancing NO synthesis and its anti-oxidation.
关键词
葛根素 /
糖基化牛血清白蛋白 /
内皮依赖性舒张 /
内皮功能 /
胸主动脉 /
兔
{{custom_keyword}} /
Key words
puerarin /
glycosylated bovine serum albumin /
endothelium-dependent relaxation /
endothelial function /
thoracic aorta /
rabbit
{{custom_keyword}} /
中图分类号:
R965
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TZIOMALOS K,ATHYROS V G,KARAGIANNIS A,et al.Endothelial dysfunction in metabolic syndrome:Prevalence,pathogenesis and management.Nutr Metab Cardiovasc Dis,2010,20(2):140 -146.[2] SORO-PAAVONEN A, ZHANG W Z, VENARDOS K, et al. Advanced glycation end-products induce vascular dysfunction via resistance to nitric oxide and suppression of endothelial nitric oxide synthase. J Hypertens, 2010, 28(4):780-788.[3] TAN K C, CHOW W S, AI V H, et al. Advanced glycation end products and endothelial dysfunction in type 2 diabetes. Diabetes Care, 2002, 25(6):1055-1059.[4] YAN L P, CHAN S W, CHAN A S, et al. Puerarin decreases serum total cholesterol and enhances thoracic aorta endothelial nitric oxide synthase expression in diet-induced hypercholesterolemic rats. Life Sci, 2006, 79(4):324-330.[5] DENG H F,ZHANG W L. Protective effect and mechanism of puerarin against lysophosphatidylcholine induced vascular endothelial cell damage. Pharmacol Clin Chin Mater Med(中药药理与临床),2011,27(2):40-43.[6] NING S Q, WANG L Y, WANG W, et al. Effect of puerarin on PCNA and suvivin in proliferating of vascular smooth muscle cell . J Cardiovas Pulm Dis(心肺血管病杂志), 2010, 29(1):56-60.[7] HAN R M, TIAN Y X, BECKER E M, et al. Puerarin and conjugate bases as radical scavengers and antioxidants: Molecular mechanism and synergism with beta-carotene. J Agric Food Chem, 2007, 55(6):2384-2391.[8] CHEN X F, DONG M B, LEI K F, et al. Antihyperglycemic effect of puerarin in experimental diabetes mellitus rats. Chin Pharm J(中国药学杂志), 2010,45(16):1242-1246.[9] MAO C P,GU Z L. Experimental effect of puerarin on the formation of advanced glycation end products and expression of RAGE in the aorta of diabetic rats . Chin Pharmacol Bull(中国药理学通报), 2004, 20(4):393-397.[10] MAKITA Z, VLASSARA H, CERAMI A, et al. Immunochemical detection of advanced glycosylation end products in vivo. J Biol Chem, 1992,267:5133-5138.[11] YAMAGISHI S, NAKAMURA K, IMAIZUMI T. Advanced glycation end products (AGEs) and diabetic vascular complications. Curr Diabetes Rev, 2005,1(1):93-106.[12] CHEN S X,SONG T,LIU Y H. Protective effects of captopril on impaired vascular endothelial function induced by AGEs . Centr South Pharmy(中南药学), 2007,5(3):202-206.[13] YAMAGISHI S, MAEDA S, MATSUI T, et al. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim Biophys Acta, 2012,1820(5):663-671.[14] MORITA M, YANO S, YAMAGUCHI T, et al. Advanced glycation end products-induced reactive oxygen species generation is partly through NF-kappa B activation in human aortic endothelial cells. J Diabetes Compl, 2013, 27(1):11-15.[15] XU B, CHIBBER R, RUGGIERO D, et al. Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products . FASEB J, 2003, 17 (10) : 1289-1291.[16] UHLMANN S, REZZOUG K, FRIEDRICHS U, et al. Advanced glycation end products quench nitric oxide in vitro. Graefes Arch Clin Exp Ophthalmol, 2002, 240(10):860-866.[17] KIM J, KIM K M, KIM C S, et al. Puerarin inhibits the retinal pericyte apoptosis induced by advanced glycation end products in vitro and in vivo by inhibiting NADPH oxidase-related oxidative stress. Free Radic Biol Med, 2012,53(2):357-365[18] CHEN F, ZHANG H Q, ZHU J, et al. Puerarin enhances superoxide dismutase activity and inhibits RAGE and VEGF expression in retinas of STZ-induced early diabetic rats. Asian Pac J Trop Med, 2012, 5(11):891-896.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
湖南省教育厅高校创新平台开放基金项目(13K113);湖南省卫生厅科研基金资助项目(B2012-74);湘南学院重点建设学科资金资助项目(XNU-125-KD-019);湖南省重点建设学科基金资助项目(湘教发76号)
{{custom_fund}}